'
Laplace Solver
Author: Anton Prassl anton.prassl@medunigraz.at
Laplace Solver
This tutorial peruses to highlight all relevant carpentry parameters needed and applied to a slab-like geometry.
Experimental Setup

Problem-specific CARPentry Parameters
2
bidomain 200.0
augment_depth 1
num_gregions 0].name roberts82
gregion[0].g_il 0.34
gregion[0].g_it 0.06
gregion[0].g_in 0.06
gregion[0].g_el 0.12
gregion[0].g_et 0.08
gregion[0].g_en 0.08 gregion[
Experiments
The below defined experiments demonstrate the wave front differences when chosing different electrical source models. To run these experiments
cd tutorials/02_EP_tissue/07_extracellular
Run
./run4.py
--help
to see all exposed experimental parameters
--sourceModel Pick type of electrical source model {monodomain,bidomain,pseudo_bidomain}
--tend TEND Duration of simulation (ms)
--depth DEPTH Depth of augmentation layer (um)
Experiment exp01
./run4.py
--sourceModel pseudo_bidomain --depth 200 --tend 30 --visualize
Experiment exp02
Same setup as above, but choosing the bidomain approximation.
./run4.py
--sourceModel bidomain --tend 30 --visualize
Experiment exp03
To see the wavefront difference using the monodomain approximation execute following line.
./run4.py
--sourceModel monodomain --tend 30 --visualize
- VERIFY
- that the setup is inducing wavefront curvature in pseudo-bidomain (and bidomain) mode
- the gain in time between the pseudo-bidomain and ''pure'' bidomain approximation
[CHEAT MODE] pseudo-bidomain </images/bathloading_pseudobidomain.gif>
bidomain </images/bathloading_bidomain.gif>
monodomain </images/bathloading_monodomain.gif>
Literature
'