'

Laplace Solver


Author: Anton Prassl anton.prassl@medunigraz.at

Laplace Solver

This tutorial peruses to highlight all relevant carpentry parameters needed and applied to a slab-like geometry.

Experimental Setup

The setup uses a regular tetrahedral FE model, representing a 3-D slab of myocardial tissue with dimensions 1.50cm x 0.01cm x 1.00 cm (l,w,h) in the x-, y, and z-directions stimulated at the left front side.

Problem-specific CARPentry Parameters

bidomain          2

  augment_depth   200.0

  num_gregions      1

  gregion[0].name   roberts82

  gregion[0].g_il   0.34

  gregion[0].g_it   0.06

  gregion[0].g_in   0.06

  gregion[0].g_el   0.12

  gregion[0].g_et   0.08

  gregion[0].g_en   0.08

Experiments

The below defined experiments demonstrate the wave front differences when chosing different electrical source models. To run these experiments

cd tutorials/02_EP_tissue/07_extracellular

Run

./run4.py
  --help

to see all exposed experimental parameters

--sourceModel     Pick type of electrical source model {monodomain,bidomain,pseudo_bidomain}

  --tend TEND       Duration of simulation (ms)

  --depth DEPTH     Depth of augmentation layer (um)

Experiment exp01

./run4.py
  --sourceModel pseudo_bidomain --depth 200 --tend 30  --visualize

Experiment exp02

Same setup as above, but choosing the bidomain approximation.

./run4.py
  --sourceModel bidomain --tend 30  --visualize

Experiment exp03

To see the wavefront difference using the monodomain approximation execute following line.

./run4.py
  --sourceModel monodomain --tend 30  --visualize
VERIFY
  • that the setup is inducing wavefront curvature in pseudo-bidomain (and bidomain) mode
  • the gain in time between the pseudo-bidomain and ''pure'' bidomain approximation

[CHEAT MODE] pseudo-bidomain </images/bathloading_pseudobidomain.gif> bidomain </images/bathloading_bidomain.gif> monodomain </images/bathloading_monodomain.gif>

Literature

'

01_basic_mesher 03_Laplace_Dirichlet_Fibers